A NOVEL SYNTHESIS OF PSEUDO- α - $\underline{\textbf{L}}$ -ALTROPYRANOSE FROM $\underline{\textbf{D}}$ -GLUCOSE

Tetsuo SUAMI, * Kin-ichi TADANO, Yoshihide UENO, and Chiyoko FUKABORI

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223

(1R,6R,8R,9R)-8,9-Isopropylidenedioxy-3-oxo-7-oxabicyclo[4.3.0]-non-4-ene, a highly functionalized bicyclic compound, has been synthesized from $\underline{0}$ -glucose employing an intramolecular aldol condensation as the key reaction, and a transformation of it into pseudo- α - $\underline{1}$ -altropyranose was achieved efficiently.

As reported in previous papers, two pseudo-sugars, namely, pseudo- α - $\underline{\mathbb{D}}$ -gluco-pyranose and pseudo- β - $\underline{\mathbb{L}}$ -altropyranose, 1) and methyl (-)-shikimate 2) have been synthesized employing $\underline{\mathbb{L}}$ -arabinose or $\underline{\mathbb{D}}$ -lyxose as a starting chiral material. As part of a chiral synthesis of carbocyclic compounds, we described herein a synthesis of (1R,6R,8R,9R)-8,9-isopropylidenedioxy-3-oxo-7-oxabicyclo[4.3.0]non-4-ene ($\underline{1}$) starting from 1,2:5,6-di- $\underline{0}$ -isopropylidene- α - $\underline{\mathbb{D}}$ -ribo-hexofuranos-3-ulose ($\underline{2}$). Compound $\underline{1}$ seems to be an important intermediate for a synthesis of optically active carbocyclic compounds, such as pseudo-hexopyranoses and pseuo-heptopyranoses. In fact, the utility was embodied in a synthesis of pseudo- α - $\underline{\mathbb{L}}$ -altropyranose ($\underline{17}$).

Wittig olefination of $\underline{2}$ with acetylmethylenetriphenylphosphorane gave the known 3-C-acetylmethylene-3-deoxy-1,2:5,6-di- $\underline{0}$ -isopropylidene- α - \underline{D} -ribo-hexofuranose ($\underline{3}$) as a mixture of (E)- and (Z)-isomers in 96% yield. Catalytic hydrogenation of $\underline{3}$ in the presence of Raney nickel and successive oxidation with pyridinium chlorochromate (PCC) afforded 3- \underline{C} -acetylmethyl-3-deoxy-1,2:5,6-di- $\underline{0}$ -isopropylidene- α - \underline{D} -allofuranose (4) in 88% yield. The H NMR spectrum of $\underline{4}$ (90 MHz, CDCl $_3$) revealed a triplet at δ 4.77 (1H, J $_{1,2}$ =J $_{2,3}$ =4.5 Hz), which was attributed to H-2 with a cis configuration with respect to H-2 and H-3 establishing the \underline{D} -allo configuration. Selective hydrolysis of the 5,6- $\underline{0}$ -isopropylidene group of $\underline{4}$ in 60% aqueous acetic acid

at ambient temperature gave the compound $(\underline{5})^{5}$ in 95% yield. Glycol cleavage of $\underline{5}$ with sodium periodate in aqueous methanol gave the aldehyde $(\underline{6})^{5}$ in a quantitative yield. The crucial intramolecular aldol condensation of $\underline{6}$ was investigated under basic or acidic conditions. When $\underline{6}$ was treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in dry benzene under reflux for 35 h, and

R=H Pseudo-hexopyranose R=CH_OH Pseudoheptopyranose

then successively treated with acetic anhydride in pyridine, the desired compound 1^{5}) was obtained in 44% yield as crystals.

Catalytic hydrogenation of $\underline{1}$ in the presence of Raney nickel in ethanol and successive PCC oxidation⁴⁾ afforded (1R,6R,8R,9R)-8,9-isopropylidenedioxy-3-oxo-7-oxabicyclo[4.3.0]nonane ($\underline{7}$)⁵⁾ in 82% yield. The 1 H NMR spectrum of $\underline{7}$ showed a doublet of triplets at δ 4.10 (1H, $J_{1,6}=J_{5ax,6}=10.5$ Hz, $J_{5eq,6}=4.5$ Hz) which was attributed to H-6, and this fact may be explained by the trans relationship of H-1 and H-6 provided the molecule takes a chair conformation.

In order to introduce oxygen functionalities to the 2-cyclohexenone ring, epoxidation of $\underline{1}$ with 35% hydrogen peroxide in methanol in the presence of 1 mol dm⁻³ sodium hydroxide solution (pH 9) was carried out. The β -epoxide $(\underline{8})^5$) was obtained in 96% yield along with the α -epoxide $(\underline{8'})^5$ in 3% yield. Dreiding model inspections show that the β -face of $\underline{1}$ is less hindered and the observed highly stereoselective epoxidation is reasonable. In the 1 H NMR spectrum of $\underline{8}$, the methine proton at C-1 was deshielded (δ 2.28-2.76) in comparison with that of 8' (δ 1.73-2.18).

Sodium borohydride reduction of the β -epoxide $\underline{8}$ gave a mixture of $(\underline{9})^{5}$ and $(\underline{9'})^{5}$ (ϵa . 4 to 1 ratio), which was separable by silica gel chromatography, in a 84% combined yield. Acetylation of $\underline{9}$ and $\underline{9'}$ in the usual manner gave the acetate $(\underline{10})^{5}$ and $(\underline{10'})^{.5}$ In the 1 H NMR spectrum of $\underline{10}$, a one-proton triplet at δ 5.11 was attributed to H-3 ($J_{2,3}=J_{2',3}=8.5$ Hz, $J_{3,4}=0$ Hz). Besides, H-3 of $\underline{10'}$ was appeared at δ 5.25 as a quartet bearing $J_{2,3}=J_{2',3}=J_{3,4}=4$ Hz in its 1 H NMR spectrum.

Epoxide ring opening of $\underline{9}$ by hydroxy anion was accomplished by refluxing with sodium acetate in aqueous 2-methoxyethanol to give a diaxial opening product, (1R,3R,4S,5S,6S,8R,9R)-3,4,5-trihydroxy-8,9-isopropylidenedioxy-7-oxabicyclo[4.3.0]nonane $(\underline{11})^5$) exclusively (73% yield). The stereochemistry of the newly introduced hydroxyl groups was established by the 1 H NMR spectrum of the triacetate $(\underline{12})^5$) which was prepared by acetylation of $\underline{11}$. Nucleophilic ring opening of the epoxide $\underline{9}^1$ by hydroxy anion also gave $\underline{11}$ in 81% yield. The formation of $\underline{11}$ from $\underline{9}^1$ is rationalized by migration of the epoxide and a subsequent hydroxide ring opening in a diaxial manner.

Benzylation of $\overline{11}$ with benzyl bromide and sodium hydride afforded the $\overline{10}$ -benzyl derivative $(\overline{13})^5$ in 91% yield. Compound $\overline{13}$ was converted into (1s,2s,3s,4s,5R)-2-acetoxy-1-acetoxymethyl-3,4,5-tribenzyloxycyclohexane $(\overline{15})^5$ in 52% overall yield by the sequential reactions as follows, 1) hydrolysis in 80% aqueous acetic acid under reflux $(\overline{13}$ to $\overline{14})$, 2) sodium borohydride reduction, 3) periodate oxidation of the formed 7,8-diol, 4) sodium borohydride reduction of an aldehyde formed, and 5) acetylation. Compound $\overline{15}$ was converted into penta- $\overline{0}$ -acetyl-pseudo- α - $\underline{1}$ -altropyranose $(\overline{16})^5$ by reductive cleavage of the protecting groups with sodium in liquid ammonia followed by acetylation in 33% yield. The $\overline{1}$ H NMR spectrum of $\overline{16}$ (CDCl $_3$) was superimposable with that of the known pseudo- α - $\underline{1}$ -altropyranose pentaacetate. $\overline{15}$ 0-Deacetylation of $\overline{16}$ 0 with sodium methoxide gave pseudo- α - $\underline{1}$ -altropyranose, (1s,2s,3s,4s,5R)-2,3,4,5-tetra-hydroxy-l-hydroxymethylcyclohexane $\overline{17}$ 5 in 81% yield.

1560 Chemistry Letters, 1985

Compound $\underline{1}$ seems to be a versatile chiral synthon for the synthesis of other pseudo-sugars.

References

- 1) T. Suami, K. Tadano, Y. Kameda, and Y. Iimura, Chem. Lett., 1984, 1919.
- 2) T. Suami, K. Tadano, Y. Ueno, and Y. Iimura, Chem. Lett., 1985, 37.
- 3) J. M. J. Tronchet, C. Cottet, B. Gentile, E. Mihaly, and J.-B. Zumwald, Helv. Chim. Acta, 56, 181 (1973).
- 4) In hydrogenation of $\underline{3}$ and $\underline{1}$ under these conditions, over-hydrogenation product, i.e. diastereomer mixtures of saturated alcohols were produced along with the desired saturated ketones.
- 5) All the new compounds were characterized by IR, ¹H NMR, mass spectra, and gave satisfactory elemental analyses or high resolution mass spectra. The physical and/or spectral data for the selected compounds are as follows. 4: mp 36.5-37 °C; $[\alpha]_D^{20}+82.1^{\circ}$ (c 1.35, CHCl₃). 5: mp 69-69.5 °C; $[\alpha]_D^{24}+79.7^{\circ}$ (c 1.82, CHCl₃). 1: mp 48-49 °C; $[\alpha]_D^{17}-45.3^{\circ}$ (c 0.92, CHCl₃); IR $v_{\text{max}}^{\text{CHCl}}$ 3 1675, 1600 cm 1; 1H NMR (CDCl₃) δ 1.35, 1.53 (3Hx2, each s, C(CH₃)₂), 1.90-2.35 (1H, m, H-1), 2.35-3.00 (2H, m, H-2,2'), 4.47-4.80 (2H, m, H-6,9), 5.73-6.10 (2H, m, H-4,8), 7.28 (1H, d, J=9 Hz, H-5); Found: C, 62.96; H, 6.80%. Calcd for $C_{11}H_{14}O_4$: C, 62.85; H, 6.71%. $\underline{7}$: mp 98-99.5 °C; $[\alpha]_D^{22}$ -33.7° (c 1.66, CHCl $_3$). $\underline{9}$: $[\alpha]_D^{27}$ +26.1° (c 1.05, CHCl $_3$). $\underline{9}$: mp 141-143 °C; $[\alpha]_D^{27}$ +63.2° (c 0.89, CHCl $_3$). $\underline{10}$: $[\alpha]_D^{27}$ +50.1° (c 0.77, CHCl $_3$). $\underline{10}$: mp 136-138 °C; $[\alpha]_D^{27}$ +84.6° (c 1.04, CHCl $_3$). $\underline{11}$: mp 159-161 °C; $[\alpha]_D^{25}$ -6.6° (c 1.00, MeOH). $\underline{12}$: mp 55-58 °C; $[\alpha]_D^{26}$ -7.8° (c 1.26, CHCl $_3$); $\frac{1}{1}$ H NMR (CDCl $_3$) δ 1.32, 1.51 (3Hx2, each s, C(CH $_3$)₂), 2.05 (3H, s, OCOCH $_3$), 2.08 (6H, s, 2xOCOCH $_3$), 1.84-2.48 (3H, m, H-1,2,2'), 4.00 (1H, dd, $J_{1.6}=11$ Hz, $J_{5.6}=3$ Hz, H-6), 4.60 (1H, t, $J_{1,9} = J_{8,9} = 4$ Hz, H-9), 5.00 (1H, q, $J_{2,3} = J_{2,3} = J_{3,4} = 3$ Hz, H-3), 5.12 (1H, t, $J_{4,5} = J_{5,6} = 3$ Hz, H-5), 5.37 (1H, t, $J_{3,4} = J_{4,5} = 3$ Hz, H-4), 5.83 (1H, d, $J_{8,9} = 4$ Hz, H-8). $\frac{13}{D}$: $\left[\alpha\right]_{D}^{27} = 0.8^{\circ}$ (\$\varrho\$ 1.22, CHC1_3). $\frac{15}{D}$: $\left[\alpha\right]_{D}^{26} = 25.7^{\circ}$ (\$\varrho\$ 0.74, $CHC1_3$); H NMR (CDC1₃) δ 1.87 (2H, dd, J=5 and 6.5 Hz, H-6,6'), 2.00, 2.06 (3Hx2, each s, 2x0C0CH₃), 2.42 (1H, q, J=6 Hz, H-1), 3.47-3.82 (3H, m, H-3,4, H-1)(2H, s, $0C_{\frac{H}{2}}C_{6}H_{5}$), 5.28 (1H, dd, J=2.5 and 6 Hz, H-2), 7.30 (15 H, s, 3x ${}^{\circ}$ OCH₂C₆ \underline{H}_5). $\underline{16}$: mp 84-85 ${}^{\circ}$ C; [α]_D²⁶-13.7 (ε 1.36, CHCl₃); high resolution mass calcd for $C_{17}H_{25}O_{10}$: m/z 389.1446, found: M+H, 389.1463. 17: α -43.6 0 (σ 1.29, MeOH); high resolution mass calcd for $C_{7}H_{15}O_{5}$: m/z 179.0918, found: M+H, 179.0915.
- 6) A. Rosenthal and M. Spinzl, Can. J. Chem., 47, 3941 (1969).
- 7) The following reaction conditions were attempted: 1) CH_3ONa in CH_3OH (none of $\underline{1}$), 2) 1 mol dm⁻³ aqueous NaOH (trace of $\underline{1}$), 3) $Et_3N-PhH-reflux$ (none of $\underline{1}$), 4) LDA (-78 $^{\circ}C$ to 0 $^{\circ}C$) (none of $\underline{1}$), 5) NaH-PhH-reflux (trace of $\underline{1}$), and 6) $BF_3-Et_2O-CH_2Cl_2$ (none of $\underline{1}$).
- 8) T. Suami, S. Ogawa, T. Ishibashi, and I. Kasahara, *Bull. Chem. Soc. Jpn.*, 49, 1388 (1976).

(Received August 15, 1985)